
Chapter 4

[93]

 UserName = sourceDTO.UserName;
 Password = sourceDTO.Password;
 Email = sourceDTO.Email;
 }
 #endregion

 public LoadStatus loadStatus;

 public System.Int32 ID;
 public System.String Name = null;
 public System.String Address = null;
 public System.String PhoneNo = null;
 public System.String UserName = null;
 public System.String Password = null;
 public System.String Email = null;

 }//end class
}//end namespace

Let us understand this code, step-by-step. First note that each DTO class would
be marked with an attribute (Serializable). This is because the DTOs would be
transferred across the tiers, and as explained earlier in this chapter, we need to
serialize data so that it can be transferred and deserialized by other applications. In
our sample, if we have the 5Tier.Common assembly running in the same process as
the 5Tier.Business and 5.GUI, then this serialization process will not be necessary
as there would be no cross-application domain call. But there can be cases when
either the BL, the DAL or the GUI assemblies can be separated physically and
located on a different tier. In these cases, there would be cross-boundary and
cross-application domain communication. We will need to serialize all of the
DTOs so that they can pass through the network across application domains. The
Serializable attribute marks the class as serializable so that .NET runtime can
handle this serialization work for us. You can get better control over the entire
serialization/deserialization process by using custom serialization, where you need
to write the code manually.

Next, in the CustomerDTO class, we have defined all of the attributes as public
variables and set them to their default values. We should try to use only primitive
data types in DTOs as they should be kept as simple as possible. If they are not
generic enough, we can have problems in using them in remote calls by different
language libraries (as they might not have those specific data types defined).

N-Tier Architecture

[94]

We have also defined a copy constructor in our DTO class, which just copies the
data from another DTO to populate the attributes in the current DTO. We will see the
importance of this when creating business layer classes.

Lazy Loading
An important thing to note here is a variable named LoadStatus. This is used to
implement lazy loading, a design pattern that helps us make our application more
efficient by loading only the required data. Using lazy loading pattern, we can defer
the loading of all of the properties of an object until they are really needed. Let me
explain with an example. In our OMS application, consider a form that shows the
list of all of the customers in a grid. Now, in this form, only the Customer ID, the
first name and the last name are shown, along with an edit and delete button.
The Customer address, email address, password and other fields are shown only
when someone edits an existing customer or adds a new one, a process which is
done through another form. So if we want to load a list of Customer objects on this
Customer List form, we don't need to fetch all the fields at once from the database.
We only need to fetch the Customer ID, first name and last name fields to make
our application more performance-efficient (by getting only the data required). And
when we are on the Edit Customer form, we need to fetch all of the details. This can
be done by having two methods in the DAL: one for a partial fetch and another for a
complete fetch. But this approach is cumbersome, and we cannot always write two
methods for each entity like this. So we follow the lazy loading design pattern,
and use an enum named LoadStatus in our code, which can have one of three
status values:

Initialized

Ghost load: object is partially loaded
Loaded: object is completely loaded

We will see in the business and data access classes how we are using the lazy loading
design to make our application more efficient.

Coming back to our DTO class, note that we have used the status value of
Initialized in our default constructor when creating a new DTO. This indicates
that the state of the DTO is initialized and there is no actual data in it, only default
values. Also, as you might have noticed, we have not added any method here
because the DTO is simply a data carrier, and not a business object in any sense.

•

•

•

